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Well-managed and enforced no-take marine reserves generate im-
portant larval subsidies to neighboring habitats and thereby con-
tribute to the long-term sustainability of fisheries. However, larval
dispersal patterns are variable, which leads to temporal fluctua-
tions in the contribution of a single reserve to the replenishment
of local populations. Identifying management strategies that mit-
igate the uncertainty in larval supply will help ensure the stability
of recruitment dynamics and minimize the volatility in fishery
catches. Here, we use genetic parentage analysis to show extreme
variability in both the dispersal patterns and recruitment contribu-
tion of four individual marine reserves across six discrete recruit-
ment cohorts for coral grouper (Plectropomus maculatus) on the
Great Barrier Reef. Together, however, the asynchronous contri-
butions from multiple reserves create temporal stability in recruit-
ment via a connectivity portfolio effect. This dampening effect
reduces the variability in larval supply from individual reserves
by a factor of 1.8, which effectively halves the uncertainty in the
recruitment contribution of individual reserves. Thus, not only
does the network of four marine reserves generate valuable larval
subsidies to neighboring habitats, the aggregate effect of individ-
ual reserves mitigates temporal fluctuations in dispersal patterns
and the replenishment of local populations. Our results indicate
that small networks of marine reserves yield previously unrecog-
nized stabilizing benefits that ensure a consistent larval supply to
replenish exploited fish stocks.

marine reserve | larval dispersal | connectivity | portfolio effects | marine
spatial planning

Marine reserves are a comprehensive tool to mitigate the
overexploitation of marine resources and to enhance the

recovery of marine ecosystems following disturbances (1–3).
They are being implemented globally to preserve biodiversity (4,
5), improve livelihoods in coastal communities (6), and indi-
rectly benefit local fisheries by protecting spawning stocks and
replenishing exploited populations beyond reserve boundaries
(7). In principle, the greater biomass of exploited species in re-
serves (8, 9), combined with greater per-capita reproductive
outputs (10, 11), generates positive ecological and socioeco-
nomic value to fisheries by contributing to the replenishment of
local populations and enhancing population persistence via the
supply of larval offspring (12–15). However, larval contributions
from individual reserves are likely to be highly variable (16, 17),
both because local population abundances vary and because
complex oceanographic processes and larval behaviors produce
spatial and temporal variability in connectivity patterns (16–19).
Such volatility in larval supply can lead to temporal fluctuations
in recruitment (20, 21) and uncertainty concerning the value of
marine reserves to either biodiversity conservation or fisheries
management (20, 22–24). Clearly, the long-term ecological and
economic benefits of no-take marine reserves depend on signif-
icant and consistent larval supply among reserves, and from re-
serves to neighboring habitats (7, 22–24). This has yet to be
established.

Decades of ecological theory on risk spreading in spatially
structured populations shows how variability in the contribution
of separate subpopulations can deliver net benefits for meta-
population growth and persistence (25–28). In general, more
subpopulations and greater population connectivity reduce the
probability of local extinctions via a “rescue effect” and dampen
local fluctuations in population replenishment (29–32) and fishery
catches (33, 34). If correct, effective networks of no-take marine
reserves could mitigate against the volatility of larval supply pro-
vided the network can dampen the spatially and temporally vari-
able contributions of individual reserves (20, 21). In the context of
optimal reserve design, variability in the aggregate performance of
a reserve network hinges on covariation among its individual
components (34, 35) so that overall stability in larval supply can
theoretically be achieved despite volatility in the performance of
individual reserves.
Such variance dampening has more recently been referred

to as a “portfolio effect,” and negative spatial covariation in
population sizes (a “subpopulation portfolio effect”) has been
observed in a diversity of biological systems, including the pop-
ulation dynamics of fishes (36–38). Modern portfolio theory
emerged from financial economics and is increasingly applied in
resource management settings to optimize the design of reserve
networks and mitigate against disturbance events (39–42). In
marine ecology, individual populations can be thought of as
different financial stocks and their larval supply are the returns
they generate. Creating a marine reserve will reliably increase
the abundance in a protected population and generate larger
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larval supply (43), like purchasing more of a particular stock. Just
as a diverse portfolio of uncorrelated financial assets minimizes
an investor’s exposure to stock market volatility (44), replication
of reserves in an interconnected network could mitigate against
fluctuations in larval supply and minimize the risk of recruitment
failure. However, to date there has been no empirical estimation
of the portfolio effect for any existing network of reserves. This
knowledge gap is significant given the large and rapidly in-
creasing global investment in interconnected networks of marine
reserves, the success of which hinges on the assumption that
networks have emergent benefits that are greater than the sum of
the constituent reserves.
For any established marine reserve network, a portfolio effect

for a protected species can be measured by observing temporal
fluctuations in the recruitment contribution of multiple reserves,
over multiple recruitment cohorts. Here, we evaluate variabil-
ity in the aggregate performance of no-take marine reserves in
the Great Barrier Reef Marine Park (GBRMP), using a unique
dataset of six discrete recruitment cohorts of juvenile coral
grouper (Plectropomus maculatus, Serranidae), spanning 6 y. We
use genetic parentage analysis on a sample of adult fish from
four no-take marine reserves and juvenile fish that recruited to
nearby coral reefs to reveal temporal trends in larval connectivity
patterns. These results allow us to measure fluctuations in the
performance of individual reserves, and reveal the existence of
a “connectivity portfolio effect,” a reduction in the volatility of

larval recruitment that results from asynchronous variation in
larval connectivity patterns.
In the GBRMP, coral grouper (Plectropomus spp.) are highly

targeted by commercial and recreational fishers and have respon-
ded positively to protection inside no-take marine reserves (1). In
the Keppel Islands, the biomass of coral grouper is two to three
times higher on no-take reserve reefs than on neighboring fished
reefs (45); hence we expect their contribution to local larval re-
plenishment to be high relative to fished reefs (11). We collected
tissue samples of adult coral grouper from four reserves in the
Keppel Islands (Fig. 1A) during the peak reproductive season
in the austral summers of 2007–2008 and 2011–2012 (Methods).
Our sample of 877 adults represents 19.2 ± 3.0% SE and 22.5 ±
4.7% SE of the reproductively mature population of coral grouper
in reserves during the sampling periods (SI Appendix, Table S1).
We also collected 981 juveniles from reserve and fished reefs
throughout the island group. Six discrete recruitment cohorts were
identified based on interruptions between periods of unimodal
distributions of spawning times of juvenile fish (Fig. 1B and SI
Appendix), providing information on recruitment and dispersal
patterns at an unusually high temporal resolution.

Results
Based on the unique genetic profiles of adult and juvenile coral
trout collected in the Keppel Islands, we identified 125 juvenile
fish as the progeny of adults sampled within the four reserves
(Methods). Assigned juvenile fish were distributed among six
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Fig. 1. Realized larval dispersal patterns of coral grouper from a network of no-take marine reserves. (A) The Keppel Islands in the southern Great Barrier
Reef, where adult coral grouper (Plectropomus maculatus) were sampled in four no-take marine reserves (Middle Island, Halfway Island, Clam Bay, and Egg
Rock). Juveniles were sampled from all known suitable coral reef habitat throughout the island group. Focal reefs are highlighted by colored dots, consistent
across panels. (B) We used daily otolith increments and length–age relationships (SI Appendix, Fig. S1) to identify six distinct spawning periods and settlement
cohorts (C1–C6) between September 2007 and April 2013 among the 981 sampled juvenile fish. (C) Parentage analysis identified 125 parent–offspring pairs
spanning all six cohorts. (D) All assignments were to parents sampled from four no-take marine reserves. For each dispersal network, colored circles (network
nodes) represent reserves and gray circles correspond to other reefs in the Keppel Islands. Lines (network edges) represent juvenile fish that successfully
dispersed from reserves to neighboring reefs, where line thickness indicates the number of assigned juveniles and line color indicates their origin.
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recruitment cohorts that represent an exhaustive sample of all
juvenile fish that settled in the island group (Fig. 1C and SI Ap-
pendix, Table S2). In each cohort, we identified juvenile fish that
dispersed from no-take marine reserves to both fished areas (85
juveniles) and other reserves (40 juveniles). However, dispersal
patterns varied substantially among recruitment cohorts, showing
no consistent trend or single underlying structure among dispersal
networks (Fig. 1D, average Pearson correlation: 0.43 ±0.03 SE).
The distance, direction, and strength of larval connections from
each of the four reserves (SI Appendix, Figs. S2 and S3) were in-
consistent among successive cohorts, indicating highly variable
connectivity patterns among reserve reefs and neighboring reefs.
Adjusting for unsampled adults, we estimate the performance

of each reserve as their proportional contribution to the overall
recruitment in the island group (Methods). The results show that
the aggregate network of four no-take marine reserves consis-
tently generates between 26 and 58% of all local recruitment for
any given cohort (Fig. 2A). On average, the aggregate perfor-
mance of the reserve network, which represents only 14% of coral
reef habitat, is responsible for 41 ± 11% SD of all recruitment in
the island group. Our findings reinforce the importance of

reserves as a source of juvenile fish for local population replen-
ishment. However, they also reveal substantial fluctuations and
uncertainty in the performance of individual reserves. The median
contribution of a single reserve to local recruitment varied be-
tween 5 and 15% with a coefficient of variation (CV) of 0.71
(Fig. 2B), meaning that the degree of variation between reserves
and between cohorts is extremely high. Incidentally, the time se-
ries also reveals asynchronous fluctuations in the local recruitment
contribution of the four reserves across the six cohorts [synchrony
index: 0.25, where 0 is maximally asynchronous and 1 is maximally
synchronous (46); Fig. 2A]. So, while the performance of a single
reserve varies with each cohort, it varies independently of other
reserves in the network. This weak covariation in the performance
of individual reserves dampens the temporal variance in the re-
cruitment contribution of the aggregate network of marine re-
serves (CV = 0.26).
The high variance in the performance of individual reserves

and the negative covariance within the aggregate network generates
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Fig. 2. Variable and asynchronous performance of no-take marine reserves.
(A) Our time series of larval dispersal patterns indicate temporal fluctuations
in the contribution of no-take marine reserves to local recruitment in the
Keppel Islands (colored lines). However, when combined (gray bars), the four
reserves generate between 26 and 58% of all local recruitment for any given
cohort (C1–C6). (B). Boxplots of the relative performance of each reserve
indicate they contribute unevenly to local recruitment. The median contri-
bution of individual reserves ranges from 5 to 15% and reveals an extremely
high degree of variance in their performance through time. Collectively, the
median contribution of the aggregate reserve network is higher and less
variable.
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Fig. 3. The connectivity portfolio effect (CPE) reduces volatility in reserve
performance. (A) We calculate the CPE from the temporal mean (μ) and
variance (σ2) of each reserve’s contribution to local recruitment of coral
grouper on log–log axes and extrapolate the mean–variance relationships (z)
to the aggregate mean contribution of the reserve network across the six
discrete cohorts in the Keppel Islands. The difference between the predicted
(circle) and observed variability (diamond) represents the strength of the
connectivity portfolio effect. (B) Based on the measured performance of
reserves in the Keppel Islands for each cohort (Fig. 2B), we estimate the
coefficient of variation (CV) in the aggregate recruitment contribution of reserves
in a network. We use a bootstrap resampling procedure to estimate the mean
and SD of CV, which reflects the volatility in reserve performance (Methods).
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a substantial portfolio effect that reduces the overall volatility in the
larval contributions of the reserve network. If we measure the mean
and variance in the local recruitment contribution of reserves across
all six cohorts, we see that reserves with greater average contribu-
tion to local recruitment also have greater variance among discrete
cohorts (Fig. 3A and Methods). Such mean–variance scaling rela-
tionships are common in ecological systems and typically follow a
power law with an exponent z lower than 2. A portfolio effect in-
dicates the temporal variance of the aggregate components is less
than predicted based on its average performance over time. Here,
the observed variance in the aggregate network of reserves in the
Keppel Islands is 1.8 (95% CI, 1.2–2.4) times less than predicted
based on the mean-variance relationship of individual reserves
(Fig. 3A). This indicates that the combined performance of the four
reserves exhibits a substantial portfolio effect to minimize volatility
in the recruitment contribution of individual reserves.
We can extend these findings by using the observed variation

in the performance of marine reserves in the Keppel Islands to
estimate the shape and strength of the connectivity portfolio
effect with increasing number of marine reserves. From the re-
cruitment contribution of reserves in the Keppel Islands, we
estimate that the volatility in the local recruitment contribution
of a single marine reserve would be on average 0.66 ± 0.16 SD
(Fig. 3B). This indicates that the supply of juvenile fish from a
single reserve can fluctuate widely between recruitment cohorts.
By bootstrap resampling from the set of reserves, we predict that
volatility will fall rapidly with every additional reserve in the
network (Fig. 3B), so that it is halved with only four reserves
(0.34 ± 0.08 SD). Therefore, by dampening the volatility of their
aggregate contribution to recruitment, networks of marine re-
serves increase temporal stability in the replenishment of local
populations.

Discussion
Consistent with previous findings (12, 13), our results reveal no-
take marine reserves generate considerable larval subsidies to
neighboring habitats and are responsible for generating a dis-
proportionally large proportion of local recruitment. However,
our unique temporal dataset also reveals high spatial and tem-
poral variability in connectivity patterns with extreme fluctuations
in the recruitment contribution of individual reserves through
time. Furthermore, scale dependency in the performance of ma-
rine reserves indicates that large mean contributions to local re-
cruitment are also associated with larger fluctuations in their
performance. While individual no-take marine reserves clearly
enhance long-term recruitment in the island group, the benefits of
a single reserve are spatially and temporally unpredictable.
Despite the volatility in larval dispersal patterns, asynchrony in

the larval supply from reserves promotes the temporal stability of
local recruitment patterns in the Keppel Islands. The presence of
a portfolio effect from the aggregate performance of the network
of reserves effectively dampens temporal fluctuations in larval
supply to yield previously unrecognized stabilizing benefits that
ensure a consistent source of local recruitment. In doing so, net-
works of no-take marine reserves minimize the risk of recruitment
failure to local fisheries and promote positive ecological and so-
cioeconomic values beyond the simple increase in fish biomass and
larval subsidies (6, 7, 22–24).
Portfolio effects are common to a variety of ecological sys-

tems where demographic and environmental processes fluctuate
asynchronously or are negatively correlated over time (34). The
connectivity portfolio effect is analogous to other ecological
portfolio effects in that it is driven by a highly stochastic process:
larval dispersal. The successful dispersal and recruitment of
marine larvae depend on both behavioral and physical processes
(16, 17, 20, 21), which creates uncertainty in connectivity patterns
between coral reef habitats. We therefore expect to see evidence

of the connectivity portfolio effect in all marine populations reg-
ulated by larval exchange.
Our results are based on one of the most intensive and extensive

genetic parentage assignment datasets available (47), but positive
parentage assignments still only represent a subsample of the re-
cruitment occurring at each location. Although our sampling of
juvenile fish was well distributed among reefs, the presence of
uncorrelated sampling noise would augment the strength of the
connectivity portfolio effect; however, it does not create it. We
would strongly expect connectivity patterns to contain the nega-
tively correlated structure that drives portfolio effects. Physical
drivers of oceanographic flows contain large stochastic com-
ponents (16–19), and advective current structures will naturally
create negative connectivity correlations in a reef matrix.
Since the supply of larval offspring is linked to the size and

structure of populations (10, 11), we also anticipate the connec-
tivity portfolio effect works in conjunction with subpopulation
portfolio effects previously described in marine fishes (34). When
fluctuations in population size lead to fluctuations in larval supply,
these are likely to accentuate the spatial and temporal variance of
recruitment patterns. Networks of no-take marine reserves, which
accumulate larger biomass of exploited species (8, 9) and generate
substantial larval subsidies, may therefore effectively mitigate local
fluctuations in spawning stock biomass, larval supply, and rates of
population replenishment.
Our findings demonstrate that effective reserve networks take

advantage of a connectivity portfolio effect that mitigates tem-
poral volatility in larval supply to ensure the stability of recruit-
ment dynamics, with potential long-term sustainability benefits for
exploited fish stocks. Replication of no-take marine reserves
within networks provides an essential hedge against uncertainty in
the dynamic processes that sustain fisheries stocks (48, 49) and
may moderate the effects of large-scale climatic disturbances (1–3)
that are projected to escalate as global warming progresses (39,
40, 42).

Methods
Sample Collections and Cohort Identification. This study focuses on the bar-
cheek coral grouper (Plectropomus maculatus, Serranidae). Like most species
of groupers, it is heavily targeted by commercial, recreational, and subsis-
tence fishers throughout the Indo-Pacific region (50). We sampled adult and
juvenile coral grouper from fringing coral reefs in the Keppel Islands be-
tween September 2007 and April 2013. We sampled adult fish intensively
from reefs in four focal no-take marine reserves, and juvenile fish on all
protected and fished reefs in the island group, with effort distributed pro-
portionally to the area of each reef (Fig. 1A). We measured the size of each
fish and aged juvenile fish from sagittal otolith to determine the age–length
relationship for juvenile P. maculatus in the Keppel Islands (Age = Total
Length × 1.159 – 4.283, R2 = 0.81) and estimate the date of spawn (SI Ap-
pendix, Fig. S1). We defined six discrete recruitment cohorts in the data,
which we believe correspond to six different adult spawning events (SI
Appendix, Table S2). A spawning event was defined as a unimodal pulse of
reproduction, which resulted in the observed dispersal and recruitment
patterns.

Underwater Visual Census Surveys and Population Size Estimates. We con-
ducted underwater visual census (UVC) surveys of P. maculatus populations
to quantify their density, biomass, and length–frequency distributions on all
focal reserve and fished reefs. These UVC surveys were part of a broader
long-term reef biodiversity monitoring program that was initiated in the
Keppel Island group in 2002 (see ref. 45 for a detailed methodology). For the
present study, we conducted standard UVC surveys along 50 × 6-m belt
transects on reef slope, crest, and flat habitat-strata for nine monitoring
sites on focal reserve reefs (Middle Island, Clam Bay, Halfway Island, and
Egg Rock) prior to each round of sample collection. To quantify reef habi-
tat areas, we used a combination of high-resolution satellite imagery and
stratified habitat surveys (reef slope, crest, flat) to map reef habitats areas
within each focal reserve. All spatial analyses were conducted using ArcGIS
(ESRI). We estimated total population size for each focal reserve, and the pro-
portion of adults sampled, by scaling up length-specific P. maculatus density
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estimates to the total area within each reef habitat strata (SI Appendix,
Table S1) (12, 51).

Parentage Analysis. We first extracted genomic DNA from ∼2 mm2 of fin or
muscle tissue and screened each individual at 23 microsatellite loci (52). We
identified parent–offspring pairs in two periods, with each period composed
of three successive cohorts. Period 1 included all sampled juvenile fish that
recruited to reefs in the Keppel Islands between September 2007 and March
2009 (n = 559) and all sampled adult fish that were mature during the same
period (n = 686), including large adults (>500 mm) captured between Sep-
tember 2011 and April 2013. Period 2 included juveniles that recruited be-
tween September 2011 and April 2013 (n = 454) and adults that were
mature during that period (n = 891), including individuals captured between
September 2007 and March 2009. For each period, we used a maximum-
likelihood approach implemented in the software program FAMOZ (53,
54) to reveal parent–offspring relationships in our samples.

Reserve Performance. In the context of this study, the performance of a single
no-take marine reserve is measured by its relative contribution to local re-
cruitment across all sampled reefs in the island group in each cohort. Since
we sampled only a fraction of all reproductively mature adults in each re-
serve (SI Appendix, Table S2), the observed number of assigned juveniles
(Fig. 1D) represents only a fraction of a reserve’s contribution to local re-
cruitment. In order to compare the performance of each reserves across
different cohort, we estimated the number of juveniles we would have
assigned to each reserve had all adults been sampled in the populations.
Since we can assign parentage to fathers, mothers, or both, the relationship
between the number assignments and the proportion of parents sampled is
nonlinear (12). The expected recruitment contribution (R) accounts for the
number of assigned juveniles given the proportion of adults sampled from
reserve i so that:

R(i) = n × 1

1 − (1 − P)2,

where n represents the number of assigned juveniles and P is the proportion
of sampled adults in the focal reef or reefs. We assume that all adult P.
maculatus within each reserve boundary have an equal probability of con-
tributing to local recruitment and that our sample of juveniles represents a
random sample of recruitment in the study area for each cohort. We then
estimate the percent contribution to local recruitment contribution of re-
serves by standardizing for the number juveniles sampled in each cohort.

Measuring the Mean–Variance Corrected Portfolio Effect. We correct our es-
timates of the portfolio effect by accounting for the natural scale depen-
dence of population processes. In financial systems, the variance in returns
scales linearly with the mean return (since every stock yields the same divi-
dend). In ecological systems, by contrast, larger populations exhibit lower
variability than we would expect from proportional scaling. Such mean–
variance scaling is common across ecological systems and predicts that the
temporal variance of individual components (σ2) increases with the mean
value (μ) according to a power-law relationship with exponent z< 2 (38, 55).
Using the mean–variance exponent fit to the sampled reserves (z = 1.87), we
predict the average recruitment contribution and variance of a single re-
serve with a mean output equal to the sum of the mean outputs of the four
individual reserves. We compare the predicted CV of this hypothetical single
reserve CVTotal = 0.459 to the observed CV of the contributions made by the
portfolio of four reserves CVPortfolio = 0.256, to calculate the strength of
the connectivity portfolio effect. We analyzed the sensitivity of our results to
the definition of cohorts and found that the results were almost identical.

A bootstrap resampling protocol estimates the volatility in the recruitment
contribution of an arbitrary number of reserves. First, we create a set of n
reserves by randomly resampling (with replacement) from the observed re-
cruitment contribution timeseries of the reserves in the Keppel Islands
(1≤n≤ 20). We repeat this procedure 100 times for each value of n to esti-
mate the mean and SD of the CV. This method assumes that recruitment
timeseries from additional reserves would have similar correlation structure
to those observed in the Keppel Islands.

Data and Code Availability. All study data are included in the article and SI
Appendix. All R scripts for the calculation of the CPE are available in
SI Appendix.
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